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Mixing Words and Mathematics

Building Decision Functions Using

Information Expressed in Natural

Language



Fuzzy Sets 

A Fuzzy set F on a space X associates with each 
x ∈ X a membership grade F(x) ∈ [0, 1] 
indicating the degree to which the element x 
satisfies the concept being modeled by F 
 
If F is modeling the concept tall and x is a person 
then F(x) is the degree to which x satisfies the 
concept tall 



The Basics of MCDM With Fuzzy 
•  Representation of Criteria as Fuzzy Subset 

over the set of Decision Alternatives 

•  Here C(x) indicates the degree to which 
alternative C satisfies criteria C 

•  Allows Linguistic Formulation of Relationship 
Between Criteria Using Set Theoretic 
Operators to Construct Multi-Criteria Decision 
Function D 



•  The Resultant Multi-Criteria Decision 
Function D is itself a Fuzzy Subset over 
set of alternatives 

•  Selection of Preferred Alternative is Based 
on Alternatives Membership in D 



Linguistic Expression of Multi-Criteria Decision
Problem

Satisfy Criteria one and Criteria two and .......

•  D = C1 and C2 and ........ and Cn

•  “and” as intersection of fuzzy sets 

•  D = C1 ∩  C2 ∩  ........ ∩  Cn

•  D(x) = Minj[Cj(x)]

•  Choose x* with biggest D(x)





Anxiety In Decision Making

•  Alternatives: X = {x1, x2, x3, ......., xq} 

•  Decision function D 

                  D(xj) is satisfaction by xj

•  x* best alternative

•  Anxiety associated with selection

        Anx(D) = 1 - (D(x*) - 1
q - 1

D(xj)∑
xj≠x*

)



Ordinal Scales

•  Z = {z0, z1, z3, ........., zm}

        zi > zk       if i > k  (only ordering)

•  Operations: Max and Min and Negation

                  Neg(zj) = zm-j   (reversal of scale)

•  Linguistic values generally only satisfy ordering

     Very High > High > Medium > Low > Very Low

•  Often people only can provide information with 

this type of granulation



Ordinal Decision Making
Yager, R. R. (1981). A new methodology for ordinal multiple aspect

decisions based on fuzzy sets. Decision Sciences 12, 589-600

•  Criteria satisfactions and importances ordinal

•  α j ∈  Z and Cj(x) ∈  Z

•  D(x) = Minj[Gj(x)]

                Gj(x) = Max(Cj(x), Neg(α j))

•  α j = z0  ⇒  Gj(x) = zm  (No effect on D(x))

    α j = zm ⇒  Gj(x) = Cj(x)



•  Linguistic Expression: Satisfy Criteria one a n d
Criteria two and  .......

      D = C1 and C2 and ........ and Cn
     D = C1 ∩  C2 ∩  ........ ∩  Cn
     D(x) = Minj[Cj(x)]

•  Linguistic Expression: Satisfy Criteria one o r
Criteria two or  .......

      D = C1 or C2 or ........ or Cn
     D = C1 ∪  C2 ∪  ........ ∪  Cn
     D(x) = Maxj[Cj(x)]



Building M-C Decision Functions

•  Linguistic Expression
Satisfy Criteria one and  Criteria two 

 o r
Satisfy Criteria one or  two and  criteria 3

o r
Satisfy criteria 4 and  Criteria 3 or  Criteria 2

 

•  Mathematical Formulation
D = (C1 ∩  C2) ∪ ( (C1 ∪  C2) ∩ C3) ∪  (C4 ∩  (C3 ∪  C2))



Generalizing “and” Operators
t-norm operators generalize “and”  (Min)

•  T: [0, 1] × [0, 1] →   [0, 1]

    1. T(a, b) = T(b, a)    Commutative
    2. T(a, b) ≥ T(c, d) if a ≥ c & b ≥ d  Monotonic
    3. T(a, T(b, c)) = T(T(a, b), c)  Associative
    4. T(a, 1) = a       one as identity

•  Many Examples of t-norms
     T(a, b) = Min[a, b]       T(a, b ) = a b   (product)
     T(a, b) = Max(a + b -1, 0)

     T(a, b) = Max(1 - ((1 - a)λ + (1 - b)λ)
1
λ , 0)

              Family parameterized by λ  



Generalizing “or” Operators
t-conorm operators generalize “or”  (Max)

•  S: [0, 1] × [0, 1] →   [0, 1]

    1. S(a, b) = S(b, a)   Commutative
    2. S(a, b) ≥ S(c, d) if a ≥ c & b ≥ d  Monotonic
    3. S(a, S(b, c)) = S(S(a, b), c)  Associative
    4. S(a, 0) = a       zero as identity

•  Many Examples of t-norms
     S(a, b) = Max[a, b]       S(a, b ) = a + b - a b   
     S(a, b) = Min(a + b, 1)

     S(a, b) = Min((aλ +bλ)
1
λ , 1)

              Family parameterized by λ  



Alternative Forms of Basic M-C functions

•  D = C1 and  C2 and  ........ and  Cn

•  D(x) = Tj[Cj(x)]

•  D(x) = ∏jCj(x)  (product)

•  D = C1 or  C2 or  ........ or  Cn

•  D(x) = Sj[Cj(x)]

•  D(x) = Min(∑ jCj(x), 1]  (Bounded sum)



•  Use of families of t-norms enables a

parameterized representation of multi-criteria

decision functions

•  This opens the possibility of learning the

associated parameters from data

•  C1     C2      C3      C4           D

     .3      .5      1         .7          .5



Generalized Importance Weighted
“anding”

•  D = C1 and  C2 and  ........ and  Cn

•  Associate with criteria Cj importance α j

•  D(x) = T j[Gj(x)]

           Gj(x) = S(Cj(x), 1 - α j)

•   D(x) = Minj[(Max(Cj(x), 1 - α j))

       D(x) = ∏(Max(Cj(x), 1 - αj)



Generalized Importance Weighted
“oring”

•  D = C1 or  C2 or  ........ or  Cn

•  Associate with criteria Cj importance α j

•  D(x) = Sj[Hj(x)]

         H(x) = T(Cj(x), α j)

•  D(x) = Maxj[Min(α j, Cj(x))]

    D(x) = Maxj[α j Cj(x)]

   D(x) = Min(∑jα jCj(x), 1]



Some Observations

•  If any Cj(x) = 0 then

          T (C1(x), C1(x), ......, C1(x)) = 0 

•  Imperative of this class of  decision functions is
        All  criteria must be satisfied

•  If any Cj(x) = 1 then

          S(C1(x), C1(x), ......, C1(x)) = 1 

•  Imperative of this class of  decision functions is
        At least one criteria must be satisfied



               

D(x) = 1
n  Cj(x)∑

j = 1

n



Mean Operators

•  M : R
n

 →  R

1.  Commutative
2.  Monotonic 
M(a1, a2, ....., an) ≥ M(b1, b2, ....., bn) if aj ≥ bj 

 3. Bounded
Minj[aj] ≤ M(a1, a2, ....., an) ≤ Maxj[aj]

(Idempotent: M (a, a, ....., a) = a

•  Many Examples of Mean Operators
Minj[aj], Maxj[aj], Median, Average

OWA Operators
Choquet Aggregation Operators



Ordered Weighted Averaging Operators
OWA Operators

Yager, R. R. (1988). On ordered weighted averaging

aggregation operators in multi-criteria decision

making. IEEE Transactions on Systems, Man and

Cybernetics 18, 183-190



OWA Aggregation Operators

• Mapping F: R
n

 →  R with F(a1, ....., an) = wj bj∑
j = 1

n

      bj is the jth largest of the aj

      weights satisfy: 1. wj ∈  [0, 1] and 2 . wj∑
j = 1

n

 = 1

         

• Essential feature of the OWA operator is the

reordering operation, nonlinear operator

• Weights not associated directly with an argument

but with the ordered position of the arguments



• W = [w1 w2        wn] called the weighting vector

• B = [b1  b2         bn] is ordered argument vector

• F(a1, ....., an) = W BT

• If id(j) is index of jth largest of ai then

           F(a1, ....., an) =  w j aid(j)∑
j = 1

n

          aid(j) = bj



Form of Aggregation is Dependent Upon the

Weighting Vector Used

OWA Aggregation is Parameterized by W



Some Examples

• W*: w1 = 1 & wj = 0 for j ≠ 1 gives

                        F*(a1, ....., an) = Maxi[ai]

• W
*

: wn = 1 & wj = 0 for j ≠ n gives

                        F*(a1, ....., an) = Mini[ai]

• WN: wj = 1
n  for all j gives the simple average

                       F*(a1, ....., an) = 1
n   ai∑

i = 1

n



Attitudinal Character of an OWA Operator

• A-C(W) = 1
n - 1

  wj (n - j)∑
j = 1

n

• Characterization of type of aggregation

• A-C(W) ∈  [0, 1]

• A-C(W*) = 1    A-C(WN) = 0.5    A-C(W
*

) = 0

• Weights symmetric (wj = wn-j+1) ⇒  A-C(W) = 0.5



An A-C value near one  indicates a bias toward the

larger  values in the argument (Or-like /Max-like)

An A-C value near zero  indicates a bias toward the

s m a l l e r  values in the argument (And-like /Min-

like)

An A-C value near 0.5 is an indication of a neutral

type aggregation



Measure of Dispersion an OWA Operator

• Disp(W) = -  wj ∑
j = 1

n
ln(wj)

• Characterization amount of information used

• Disp(W*) = Disp(W
*

) = 0  (Smallest value)

   A-C(WN) = ln(n)  (Largest value)

• Alternative Measure

       Disp(W) =   (wj)
2∑

j = 1

n



 Some Further Notable Examples

• Median : if n is odd  then wn + 1
2

 = 1 

                 if n is even  then wn
2

 = wn
2

+1 = 1
2

• kth best: wk = 1   then F*(a1, ....., an) = aid(k)

• Olympic Average: w1 = wn = 0, other wj =  1
n - 2

• Hurwicz average: w1 = α , wn = 1-α , other wj = 0



OWA Operators Provide a Whole family of

functions for the construction of mean like

multi–Criteria decision functions

D(x) = FW(C1(x), C2(x), ......, Cn(x))



Selection of Weighting Vector
Some Methods

1. Direct choice of the weights

2. Select a notable type of aggregation

3. Learn the weights from data

4. Use characterizing features

5. Linguistic Specification



Learning the Weights from Data

• Filev, D. P., & Yager, R. R. (1994). Learning OWA operator weights

from data. Proceedings of the Third IEEE International Conference on

Fuzzy Systems, Orlando, 468-473.

• Filev, D. P., & Yager, R. R. (1998). On the issue of obtaining OWA

operator weights. Fuzzy Sets and Systems 94, 157-169.

• Torra, V. (1999). On learning of weights in some aggregation

operators: the weighted mean and the OWA operators. Mathware

and Softcomputing 6, 249-265



Algorithm for Learning OWA Weights

•  Express OWA weights as wj = eλ j

eλk∑
k = 1 

n

•  Use data of observations to learn λ i

    (a1 ,     , an)   and aggregated value d

•  Order arguments to get bj for j = 1 to n

•  Using current estimate of weights calculate 

         d  = wj∑
j = 1 

n
 bj

•  Updated estimates of λ j
                         λ'j = λj - α wj (bi - d ) (d  - d) 



Using Characterizing Features

• A-C(W) = 1
n - 1

  wj (n - j)∑
j = 1

n

• A-C(W) = 1   “orlike”

  A-C(W) = 0     “andlike”

• α  ∈  [0, 1] degree of “orness”

• Determine W with specified α  



O’Hagan Method

• Specify α  and determine weights to maximize the

dispers ion

•      Max  -  wj ∑
j = 1

n
ln(wj)

    such that 

           1. 1
n - 1

  wj (n - j)∑
j = 1

n
 = α  

           2.   wj ∑
j = 1

n
 = 1

           3.   wj ≥ 0



Linguistic Specification of Weights

1. Linguistically specify aggregation imperative of

multiple criteria

2. Translate linguistic imperative into Fuzzy Set

3. Use fuzzy set to determine OWA weights 

Computing with Information Specified in a

Natural Language



Quantifier Guided Criteria Aggregation

• D = Min:  All  criteria must be satisfied

   D = Max:  At least one criteria must be satisfied

     

           “Quantif ier”  criteria must be satisfied

• Other examples of linguistic quantifiers:

           most, almost all, at least half

          only a few, at least 1/3

• Monotonic quantifiers



Representation of Linguistic Quantifier

• Represent quantifier as fuzzy subset Q on unit

interval

• Q(r) is the degree the proportion r satisfies the

concept of the quantifier

• Q : [0, 1] →  [0, 1] 

         1. Q(0) = 0

         2. Q(1) = 1

         3.  Q(r) ≥ Q(p)  if r > p

                     BUM Function



Obtaining OWA Weights from Quantifier

1
n

2
n

3
n

n
n

1

w1

w2

w3

Q(r)

r

Quantifier

• wj = Q( j
n ) - Q(j - 1n )



Functionally Guided Criteria
Aggregation

• Specify a Bum function f: [0, 1] →  [0, 1] 

         1. f(0) = 0

         2. f(1) = 1

         3.  f(r) ≥ f(p)  if r > p

• wj = f( j
n ) - f(j - 1n )

• Linear function f(r) = r    Quantifier ⇔ S o m e

    wj = 1
n     



Importance Weighted OWA Multi-Criteria

Decision Functions

• Importance vi  associated criteria Ci

• Aggregation Agenda
    Quantifier Important Criteria are Satisfied

         Most  Important Criteria are Satisfied

• D(x) = FQ/V(a1, a2, ....., an)

                     ai = Ci(x)



Calculation of D(x) = FQ/V(a1, a2, ....., an)

• Order the criteria satisfactions the ai

• aid(j) is jth largest  & vid(j) its importance

•  Calculate  Sj = vid(k)∑
k = 1

j

    &  T = Sn= vid(k)∑
k = 1

n

 • Determine OWA Weights

                 wj = Q(
Sj

T
) - Q(

Sj-1

T
)

 • D(x) = w j aid(j)∑
j = 1

n



Some Methods of Obtaining Importances

• Fixed Specified Value

• Determined by Property of Alternative

                 vj = E(x)

• Dependent upon Other Attribute in Aggregation

             vj = Ck(x)

 Induces a prioritization

• Rule Based 



Concept Based Hierarchical

Formulation of Multi-Criteria

Decision Functions Using OWA

Operators



Definition of a Concept

• Concept is more abstract criteria

Con ≡ <C1, C2,...., Cn: V: Q>.

• Ci are a collection of measurable criteria

• Q is an OWA Aggregation Imperative

• V vector where vi is importance of Ci in concept

•  Con(x) = FQ/V(C1(x), C2(x),...., Cn(x))



Concepts with Concepts as Components

Con  = <Con1, Con2, ...., Conq: V: Q>.

Con(x) = FQ/V(Con1(x), Con2(x),...., Conq(x))

Multi-Criteria Decision Function Viewed as

Concept

Allows hierarchical structure for the multi-criteria

decision functions



Decision function:

         (C1 and C2 and C3) or (C3 and C4)

Represent as concept: <Con1, Con2 : V: Q>.

Here Q is or  and V  =  
1

1
.

Additionally

Con1 = <C1, C2, C3: V1: Q1>

Con2 = <C3, C4 : V2: Q2>

Where Q1 = Q2 = all 

V1 = 

1

1

1

 and V 2 = 
1

1
 



Hierarchical Formulation

Q

V

CC
3 4

Con
1 Con

2

1
Q

1
V

2
Q

2
V

C C C
321



Ordinal OWA Operator

• Z = {z0, z1, z3, ........., zm } ordinal scale

• Mapping F: Z
n

 →  Z with 

                 F(a1, ....., an) = Maxj[wj ∧  bj]

       bj is the jth largest of the aj
       weights satisfy: 1. wj ∈  Z

                                  2.   wi ≥ wk  if i > j

                                  3.  wn = zm  

• Allows mean like M-C decision functions with
ordinal information



Multi-Criteria Decision Functions Using
Choquet Aggregation Operators 

• Provides wide class of M-C decision functions

• C  = {C1, C2, ........, Cn}  “set of all criteria”

• Requires specification of monotonic measure µ

over set of criteria

• D(x) = Gµ(a1, a2, ....., an)

                     ai = Ci(x)



Set Measure µµµµ

• For any subset A  of criteria, µ (A ) indicates the

acceptability of a solution that satisfies all the
criteria in A 

• µ : 2C  →  [0, 1] (subsets of C  into the unit interval)

       1. µ(∅)  = 0

       2. µ(C ) = 1

       3. µ(A) ≥≥≥≥ µ(B)  if B ⊂⊂⊂⊂     A

• µ(∅)  = 0  & µ(A ) = 1 “any criteria is okay”

   µ(C ) = 1  & µ(A ) = 0   “all criteria are needed”



Evaluation of Choquet M-C Decision Function

• D(x) = Gµ(a1, a2, ....., an)      ai = Ci(x)

• Order criteria satisfactions ⇒  aid(j) is jth largest  

• Hj ={Cid(k)| k = 1 to j}, j most satisfied criteria

• wj =µ(Hj) - µ(Hj-1)

• D(x) = Gµ(a1, a2, ....., an) = w j aid(j)∑
j = 1

n



Uninorms



•  t-norm operators
             T(a1, a2, ....., an) = T(a1, a2, ....., an, 1)

  Identity is One  
            T(a1, a2, ....., an) ≥ T(a1, a2, ....., an, an+1)

•  t-conorm operators
             S(a1, a2, ....., an) ≤ S(a1, a2, ....., an, an+1)

  Identity is Zero 
              T(a1, a2, ....., an) = T(a1, a2, ....., an, 0)

•  Uninorm operators 
      Identity is e  ∈  [0, 1]



Uninorm operators with identity e
   
For an+1 < e

       U(a1, a2, ....., an) ≤ U(a1, a2, ....., an, an+1)

   For an+1 = e

       U(a1, a2, ....., an) = U(a1, a2, ....., an, e)

   For an+1 > e

       U(a1, a2, ....., an) ≥ U(a1, a2, ....., an, an+1)



M-C Decision Functions Using Uninorms

•  Multi-Criteria Decision Function
D(X) = U(C1(x),  ....., Cn(x))

•  Criteria with satisfaction greater then e  have
positive effect while those less then e  have
negative effect

•  Introduces bipolar scale

•  e  acts like “0” in a zero in simple addition



Multi-Criteria Decision Functions Using
Fuzzy Systems Modeling 

•  Set of Criteria C1, C2, ........, Cn

•  Describe Decision Function D(x)

• If S.C1 is A11 and ... S.Cn is A1n then D(x) is d1

  If S.C1 is Am1 and ... S.Cn is Amn then D(x) is dm

•  Aij is fuzzy subset of unit interval

    di value in the unit interval

    S.Cj denotes variable “satisfaction of Criteria Cj”



Evaluation of Decision Function by Alternative 

•  Determine Satisfaction of Rule i by alternative x

                     ri(x)= Aij(Cj(x))∏
j = 1

n

•  Obtain overall satisfaction

                D(x) = 

ri(x) di∑
i = 1

m

ri(x)∑
i = 1

m



Multi-Criteria Decision ChoiceMulti-Criteria Decision Choice
ProcedureProcedure

Select x* such that

         D(x*) = Max[D(xj)]



Random Experiment DecisionsRandom Experiment Decisions
RED CHOICERED CHOICE

Calculate

 

bj =
D(x j)

Maxi[D(xi)]
and pj =

(bj)
λ

(bi)
λ

i=1

n

∑

Perform random experiment with Pj as
 probability of xj as outcome

Select outcome of experiment as choice



If λ →∝  then select x*  (alternative with Max satisfaction

If λ = 0  then all Pj are equal

If λ = 1  then

 

Pj =
D(x j)

D(xi)
i
∑

λ is a reflection  of confidence in Multi-Criteria
Decision function D

    Formulation of D and Criteria Valuations



Evaluating Criteria Satisfaction Cj(x)

•  Scalar Number: Cj(x) = 0 .7

•  Ordinal Value: Cj(x) = med ium

•  Interval Valued : Cj(x) = [0.3, 0.7]

•  Fuzzy Set Valued: Cj(x) is a fuzzy subset of [0, 1]

•  Intuitionistic Values: Cj(x) = (a, b)    /a + b ≤ 1

a degree satisfaction/b degree not satisfaction

• Probabilistic Values: Cj (x) is Probability

distribution on [0, 1]



       THE END



Lexicographically PrioritizedLexicographically Prioritized

Multicriteria Multicriteria Decisions UsingDecisions Using

Scoring FunctionsScoring Functions



Multi-Criteria Decision ProblemMulti-Criteria Decision Problem

• Collection of criteria C = {C1, ..., Cn}

• Set of alternatives X = {x1, ..., xm}.

• Ci(x) as a value in the unit interval

• Overall satisfaction of alternative to criteria

• Weighted Aggregation of criteria satisfactions

 
C(x) = wi Ci(x)

i
∑



Properties of Importance WeightsProperties of Importance Weights

• wi ∈ [0, 1]

• C(x) is called a weighted scoring function

• C(x) is monotonic in Ci(x)

• Special case: wi sum to 1

      C(x) is called a weighted averaging function

       Mini[Ci(x)] ≤ C(x) ≤ Maxi[Ci(x)] (Bounded)



These weighted aggregation operators allow

tradeoffs between criteria.

We can compensate for decrease of ∆ in

satisfaction to criteria Ci by gain wk/wi  ∆ in

satisfaction to criteria Ck.



In some applications we may have a

lexicographiclexicographic ordering of the criteria and do not

want to allow this kind of compensation between

criteria.



Child Bicycle Selection ProblemChild Bicycle Selection Problem

 Selecting bicycle for child using criteria of safety and cost

 However any bicycle we select must be safe

 We do not want poor safety to be compensated for by

very low cost.

 Before considering cost must be sure the bicycle is safe.

 A lexicographic induced prioritization ordering of criteria.

 Safety has a higher priority.



 In organizational decision making criteria desired

by superiors generally, have a higher priority then

those of their subordinates.  The subordinate must

select from among the solutions acceptable to the

superior.

 Air traffic controller decisions involve a prioritization

of considerations with passenger safety usually at

the top.



 WHAT IS NEEDEDWHAT IS NEEDED

 An aggregation operator that can

handle lexicographically induced

priority between the criteria



 Solution ImperativeSolution Imperative

 Use importance weights

 Importance weight of lower priority criteria based on
satisfaction to higher priority criteria

 Effectively prevents satisfaction of lower priority

criteria from compensating for poor satisfaction to

higher priority criteria.



Prioritized ScoringPrioritized Scoring

OperatorOperator



Problem FormulationProblem Formulation

• Collection of criteria partitioned into q distinct categories

               H1, H2, ..., Hq

• Hi = {Ci1, Ci2, ..., Cini}: Cij are the criteria in category Hi

• A  prioritization between these categories

           H1 > H2, ... > Hq

• Criteria in Hi have a higher priority than those in Hk if i < k

• Criteria in the same category have the same priority

• Total number of criteria is n



Prioritized Scoring OperatorPrioritized Scoring Operator
PS OperatorPS Operator

• Alternative x ∈ X

• Cij(x)  ∈  [0, 1] is x satisfaction to criteria Cij.

• C(x) overall score for  alternative x 

• Prioritized Scoring (PS) operator

• Weights used to enforce the priority relationship

• Weights will be dependent on x

 

C(x) = ( wijCij(x))
j=1

ni

∑
i=1

q

∑



Determination of WeightsDetermination of Weights

• For each category Hi we calculate Si = Minj[Cij(x)]

• Si is the value of the least satisfied criteria in category Hi

• S0 = 1 by convention

• Calculate

• Set

• Use

 
Ti = Sk

k=1

i−1

∏          (T3 = S0S1S2)

 
uij = Ti

 
wij = uij



Properties of the weightsProperties of the weights

• Criteria in same category have same weight

• Criteria in top category have weight 0ne

• Lower priority criteria smaller weights

 
wij = Ti

 Ti ≥ Tk for i < k

 T1 = 1     (Criteria in H1 have weight 1)

• If Si = 0 then wkj = 0 for k > i (Contribution blocked)



 

C(x) = Ti( Cij(x))
j=1

ni

∑
i=1

q

∑

Effective Prioritized Scoring OperatorEffective Prioritized Scoring Operator

 Ti decreases as i increases

Low satisfaction for higher priority criteria

blocks contribution by low priority criteria



Manifests Fundamental Feature of the PrioritizationManifests Fundamental Feature of the Prioritization

Poor satisfaction to any higher criteria reduces the

ability for compensation by lower priority criteria.

.





Basic Features of the PS OperatorBasic Features of the PS Operator

• Importance weights of a criterion depend on the

satisfaction to higher priority criteria

• Lower priority criteria only contribute to the score of

alternatives satisfying higher priority criteria

• Lower priority criteria used to distinguish between

alternatives satisfying higher priority criteria

• Importance weights will be different across

alternatives.



Why have we chosen this scoring type operator rather

then an averaging operator which simply requires that

we normalize the weights ?

In this case of partial ordering of the criteria (more the

one criteria in each category) performing this

normalization does not always guarantee a monotonic

aggregation







Prioritized Scoring Operator Respects thePrioritized Scoring Operator Respects the
MonotonicityMonotonicity

For example 1

• w1j = u1j = 1 and w2j = u2j = 0

• C(x) = 3.

For example 2

•w1j = u1j = 1 and w2j = u2j = 1

•C(x) = 4

 The monotonicity is respected.



If the priority relationship between the

criteria is a linear ordering (one criteria in

each category) then we can obtain a

monotonic prioritized averaging (PA)

operator



Prioritized AveragingPrioritized Averaging

OperatorsOperators



Problem FormulationProblem Formulation

• Collection of criteria partitioned into q distinct categories

               H1, H2, ..., Hq

• Hi = {Ci}: One criteria in criteria in category Hi.

• A  prioritization between these categories

           C1 > C2, ... > Cq.

• Criteria Ci has higher priority than Ck if i < k.



Prioritized Averaging OperatorsPrioritized Averaging Operators
PA OperatorPA Operator

• Alternative x ∈ X

• Ci(x)  ∈  [0, 1] is x satisfaction to criteria Ci

• C(x) overall score for  alternative x 

• Prioritized Averaging (PA) operator

 
C(x) = wiCi(x)

i=1

q

∑

 The wi  depend on Ck(x) for k < i



Determination of WeightsDetermination of Weights

• For category Hi we calculate Si = Ci(x)

• Si is the value of the least satisfied criteria in category Hi

• S0 = 1 by convention

• Calculate

 
Ti = Sk

k=1

i−1

∏          (T3 = S0S1S2)

 ui = Ti       (pre-weights)

 
wi =

Ti
T

    T = Ti
i
∑        



Prioritized Averaging OperatorPrioritized Averaging Operator

 
C(x) = wiCi(x)

i=1

q

∑

 
wi =

Ti
T

    T = Ti
i
∑        

 Ti = C1(x)C2(x)C3(x)....Ci−1(x)    i >1

 T1 = 1

 Weights decrease as i increases

Lack of satisfaction to higher priority criteria
blocks compensation by lower priority criteria



IllustrationIllustration
 C1 > C2 > C3 > C4

 C1(x) = 1 C2(x) = 0.5 C3(x) = 0.2 C4(x) = 1

  T1 = 1 T2 = 1 T3 = 0.5 T4 = 0.1 T = 2.6

 w1 = 0.38 w2 = 0.38 w3 = 0.2 w4 = 0.04

 C(x) = (0.38)(1) + (0.38)(0.5)+ (0.2)(0.2) + (0.04)(1) = 0.65

 C1(y) = 0.2 C2(y) = 0.5 C3(y) = 1 C4(y) = 1

  T1 = 1 T2 = 0.2 T3 = 0.1 T4 = 0.1 T = 1.4

 w1 = 0.72 w2 = 0.14 w3 = 0.07 w4 = 0.07

 C(y) = (0.72)(0.2) + (0.14)(0.5)+ (0.07)(1) + (0.07)(1) = 0.35



Alternative Determination of Alternative Determination of SSii

 
Hi = {Ci1,Ci2,Ci3,......,Cini

}

Si is effective satisfaction of criteria in Hi

 
Si = Minj[Cij(x)]      (Least satisfied criteria)

 

Si =
1

nij=1

ni

∑ Cij(x)  (Average satisfaction in Hi)     

 
Si = OWA(Ci1(x),Ci2(x),Ci2(x), ....,Cini

(x))



The EndThe End




