Systems analysis for geophysics: Challenges of the 21st century

Alexei D. Gvishiani Geophysical Center of Russian Academy of Sciences, Committee on Systems Analysis of RAS

EARTH'S MAGNETOSPHERE

Solar activity determines the state of the magnetospheric plasma condition and ionospheric conductivity.

M and I are electromagnetically coupled.

INTERMAGNET OBSERVATORIES

11.11.2015

MAGNETIC MEASUREMENTS IN THE IONOSPHERE

Low polar orbiting satellites carry highprecision vector and scalar magnetometers

SWARM 2013 -(European Space Agency)

Multi-satellite. Simultaneous measurement at different geographical points. Separation of spatial and temporal variations

GEOMAGNETIC INFORMATION NODES

11.11.2015

SYSTEM ANALYSIS IN INTERMAGNET CENTERS

Data -acquisition of observatories -transmition

-storage

- -data base management
- -correlation to definitive magnetgrams
- -retrieval
- -integration of with satellite and sun data
- -data mining
- -pattern recognition
- -knowledge base
- -interaction with other centers

RECOGNITION OF CRUSTAL EARTHQUAKE-PRONE AREAS FOR MODERATE (5.0) AND STRONG (6.5) EARTHQUAKES

FCAZ RECOGNITION OF M≥7.75 CRUSTAL EARTHQUAKE-PRONE AREAS IN THE ANDES

11.11.2015

COMMON FEATURES OF SA IN THE ABOVE SEISMOLOGICAL AND MAGNETIC STUDIES

11.11.2015

<u>Multivaluedness</u>

$$\begin{aligned} A_{SA} &= \{A_1, A_2, \dots, A_n\} \\ A_i \colon X \to KB_X^i, \quad i = 1, \dots, n \end{aligned}$$

Decomposability and compondness

$$A_{SA} = B_1 \oplus B_2 \oplus \cdots \oplus B_n$$

where B_i are non-linear SA operators to study subsystem X_i

Integrability of the knowledge bases

$$KB_X = \int_i KB_X^i di$$

Reproducibility

Once free parameters are fixed, KB_X remains stable in every later realization of $A: X \rightarrow KB_X$

WHAT IS SYSTEMS ANALYSIS AND WHAT IS NOT

Yes, it is SA

- An applied problem (complex system X) is studied by several SA methods born outside a particular discipline and their results are integrated into joint SA knowledge base KB_X.
- Significant added value can be provided to a particular scientific discipline through KB_x.

WHAT IS SYSTEMS ANALYSIS AND WHAT IS NOT No, it is not SA

- The problem (complex system X) is studied by just one method born inside a particular discipline and the knowledge base is fully constructed by the results of this unique approach.
- Small or no added value is provided since the level of knowledge inside the particular discipline is, apriori, higher than the one brought by SA from outside.

MATHEMATICAL FORMALIZATION

- Mathematical constructions such as fields, rings, groups, semi-groups, linear spaces, Boulean algebra etc. have it's own strict and unique axiomatics.
- As SA, those formal mathematical constructions model real objects and processes.

APPLIED PROBLEMS OF MATH LINEAR SPACES THEORY

The linear space of colours

$$\vec{x} + \vec{y} = \vec{z}$$
 + =
 $\lambda \vec{x} = \vec{y}$ 2 • =

$$\lambda(\overrightarrow{x_1} + \overrightarrow{x_2}) = \lambda \overrightarrow{x_1} + \lambda \overrightarrow{x_2}$$

and
$$\exists \ 0: \ \forall \ \overrightarrow{x} \quad \overrightarrow{x} + 0 = 0 + \overrightarrow{x} = \overrightarrow{x}$$

1D, 2D, 3D Euclidean vector spaces

Conclusions

At the present stage of impetuous development of SA, methodological efforts towards strict SA mathematical axiomatics are highly desirable.

What can we do to achieve it ? :

Pure mathematicians are needed in SA research teams.

Classes of applied problems, to which SA is applicable, should be selected and described.

#Characteristic features of these problems should be extracted and defined as formally as possible.

Strict axiomatics of SA is created on the basis of the previous steps.

 New stage of ASA development on the basis of SA as a mathematical discipline.