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The Problems of the World Are Complex!



Financial Crisis!



Conflict, War!



Cascading Effects During Financial Crises!

Social Dilemma Problem!
-  Global Warming!
-  (Financial Crisis)!
-  Free-Riding!
-  Tax Evasion!
-  Environmental Pollution!
-  Environmental Exploitation!
-  Overfishing!

Climate Change!
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Globally networked risks and how
to respond
Dirk Helbing1,2

Today’s strongly connected, global networks have produced highly interdependent systems that we do not understand
and cannot control well. These systems are vulnerable to failure at all scales, posing serious threats to society, even when
external shocks are absent. As the complexity and interaction strengths in our networked world increase, man-made
systems can become unstable, creating uncontrollable situations even when decision-makers are well-skilled, have all
data and technology at their disposal, and do their best. To make these systems manageable, a fundamental redesign is
needed. A ‘Global Systems Science’ might create the required knowledge and paradigm shift in thinking.

G lobalization and technological revolutions are changing our pla-
net. Today we have a worldwide exchange of people, goods,
money, information, and ideas, which has produced many new

opportunities, services and benefits for humanity. At the same time,
however, the underlying networks have created pathways along which
dangerous and damaging events can spread rapidly and globally. This has
increased systemic risks1 (see Box 1). The related societal costs are huge.

When analysing today’s environmental, health and financial systems
or our supply chains and information and communication systems, one
finds that these systems have become vulnerable on a planetary scale.
They are challenged by the disruptive influences of global warming,
disease outbreaks, food (distribution) shortages, financial crashes, heavy
solar storms, organized (cyber-)crime, or cyberwar. Our world is already
facing some of the consequences: global problems such as fiscal and
economic crises, global migration, and an explosive mix of incompatible
interests and cultures, coming along with social unrests, international
and civil wars, and global terrorism.

In this Perspective, I argue that systemic failures and extreme events are
consequences of the highly interconnected systems and networked risks
humans have created. When networks are interdependent2,3, this makes
them even more vulnerable to abrupt failures4–6. Such interdependencies
in our ‘‘hyper-connected world’’1 establish ‘‘hyper-risks’’ (see Fig. 1). For
example, today’s quick spreading of emergent epidemics is largely a result
of global air traffic, and may have serious impacts on our global health,
social and economic systems6–9. I also argue that initially beneficial
trends such as globalization, increasing network densities, sparse use of
resources, higher complexity, and an acceleration of institutional decision
processes may ultimately push our anthropogenic (man-made or human-
influenced) systems10 towards systemic instability—a state in which things
will inevitably get out of control sooner or later.

Many disasters in anthropogenic systems should not be seen as ‘bad luck’,
but as the results of inappropriate interactions and institutional settings. Even
worse, they are often the consequences of a wrong understanding due to the
counter-intuitive nature of the underlying system behaviour. Hence, conven-
tional thinking can cause fateful decisions and the repetition of previous
mistakes. This calls for a paradigm shift in thinking: systemic instabilities
can be understood by a change in perspective from a component-oriented to
an interaction- and network-oriented view. This also implies a fundamental
change in the design and management of complex dynamical systems.

The FuturICT community11 (see http://www.futurict.eu), which involves
thousands of scientists worldwide, is now engaged in establishing a

‘Global Systems Science’, in order to understand better our information
society with its close co-evolution of information and communication
technology (ICT) and society. This effort is allied with the ‘‘Earth system
science’’10 that now provides the prevailing approach to studying the
physics, chemistry and biology of our planet. Global Systems Science
wants to make the theory of complex systems applicable to the solution
of global-scale problems. It will take a massively data-driven approach
that builds on a serious collaboration between the natural, engineering,
and social sciences, aiming at a grand integration of knowledge. This
approach to real-life techno-socio-economic-environmental systems8 is
expected to enable new response strategies to a number of twenty-first
century challenges.

1ETH Zurich, Clausiusstrasse 50, 8092 Zurich, Switzerland. 2Risk Center, ETH Zurich, Swiss Federal Institute of Technology, Scheuchzerstrasse 7, 8092 Zurich, Switzerland.

BOX 1

Risk, systemic risk and hyper-risk
According to the standard ISO 31000 (2009; http://www.iso.org/iso/
catalogue_detail?csnumber543170), risk is defined as ‘‘effect of
uncertainty on objectives’’. It is often quantified as the probability of
occurrence of an (adverse) event, times its (negative) impact
(damage), but it should be kept in mind that risks might also create
positive impacts, such as opportunities for some stakeholders.

Compared to this, systemic risk is the risk of having not just
statistically independent failures, but interdependent, so-called
‘cascading’ failures in a network of N interconnected system
components. That is, systemic risks result from connections between
risks (‘networked risks’). In such cases, a localized initial failure
(‘perturbation’) could have disastrous effects and cause, in principle,
unbounded damage as N goes to infinity. For example, a large-scale
power blackout can hit millions of people. In economics, a systemic
risk could mean the possible collapse of a market or of the whole
financial system. The potential damage here is largely determined by
the size N of the networked system.

Even higher risks are implied by networks of networks4,5, that is, by
the coupling of different kinds of systems. In fact, new vulnerabilities
result from the increasing interdependencies between our energy,
food and water systems, global supply chains, communication and
financial systems, ecosystems and climate10. The World Economic
Forum has described this situation as a hyper-connected world1, and
we therefore refer to the associated risks as ‘hyper-risks’.
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Humans have created tightly connected systems and networked risks, 
which has led to a world we do not understand and cannot control well. 
Systemic risks and extreme events are consequences of this. !
 !
However, systemic instabilities can be understood by a change in 
perspective from a component-oriented to an interaction- and network-
oriented view. This also entails a fundamental change in the design and 
management of complex dynamical systems. Establishing a "Global 
Systems Science" will allow us to better understand our information 
society with its close co-evolution of information and communication 
technology (ICT) and society. This effort is allied with the "earth system 
science" that now provides the prevailing approach to studying the 
physics, chemistry and biology of our planet.!
 !
Global Systems Science makes current theories of crises and disasters 
applicable to the solution of global-scale problems, taking a massively 
data-driven approach that builds on a serious collaboration between the 
natural, engineering, and social sciences, i.e. a grand integration of 
knowledge.!

Global Systems Science!



Social Differentiation and Diversity!
Dirk Helbing!

and Michael Mäs!

The Micro-Macro Problem!



The “whole does not equal the sum of its parts; it is something different, 
whose properties differ from those displayed by the parts from which it 
is formed.” (Durkheim 1982:128) !
“The determining cause of a social fact must be sought among 
antecedent social facts and not among the states of the individual 
consciousness.” (Durkheim 1982:134)!

„The Whole is More than the Sum of Its Parts“!



Dirk Helbing!
with Thomas Chadefaux, Wenjian Yu, Thomas Grund, Christian Waloszek,!

Carlos Roca, Sergi Lozano, Matjaz Perc, Attila Szolnoki,!
and others!

!

Modeling the Breakdown and Emergence 
of Coordination or Cooperation!



Cascading Effects During Financial Crises!

Social Dilemma Problem!
-  Global Warming!
-  (Financial Crisis)!
-  Free-Riding!
-  Tax Evasion!
-  Environmental Pollution!
-  Environmental Exploitation!
-  Overfishing!

Enviromental Exploitation!

Border between Haiti and Dominican Republic !
© 2010 Google!



Enviromental Pollution!

Public domain!



Overfishing!

© Pierre Gleizes / Greenpeace!
!



Self-Organization of a Behavioral 
Convention!

!The result of a social interaction between two individuals is 
characterized by the “payoff”!

B    B! 0   0!
0    0! B   B!

left     right!

left!

right!

Pedestrian 2!

Pe
de

st
ria

n 
1! B = benefit of evading on 

the same side = time 
saved compared to one 
pedestrian evading to the 
right and the other one to the 
left!

dp(i,t)/dt = -2rB[p(i,t)-1/2] p(i,t) [1-p(i,t)]     i=1: right, i=2: left!

Only the stationary solutions P(i,t)=0 or 1 are stable, i.e. one evading side !
will become a behavioral convention (Helbing, 1990, 1991, 1992; Young 1993)!



The Dilemma of Social Cooperation!
!The prisoner's dilemma assumes that, when two individuals 
cooperate, both get the “reward” R, while both receive the 
“punishment” P< R, if they defect. If one of them cooperates (“C”) and 
the other one defects (“D”), the cooperator suffers the “sucker’s 
payoff” S < P, while the payoff T > R for the second individual reflects 
the “tempation” to defect. Additionally, one typically assumes S+T < 
2R. !

R1  R2! S1  T2!

T1  S2! P1  P2!

Cooperate   Defect!

Cooperate!

Defect!

Player 2!
Pl

ay
er

 1
!

For example:!
S1 = S2= S = -5!
P1 = P2= P = -2!
R1 = R2= R = -1 !
T1 = T2= T = 0!
!

Many “social dilemmas” are of a similar kind (see public goods game)!
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How the Banking Network Changed!

!

From: Haldane 



Cascading Effects During Financial Crises!

Video by Frank Schweitzer et al.!



Mousetrap fission, by Gerhard G. Paulus, University of Jena, https://www.youtube.com/watch?v=Wiz1VVLYgl4!

Loss of Control through Cascade Effects!



The Flash Crash on May 6, 2010!

The flash crash turned solid assets into penny stocks within minutes.!
Was an interaction effect, no criminal act, ‘fat finger’, or error.!

600 billion dollars evaporated in 20 minutes!



Engineered Breaking Points to Stop 
Cascades!



Dirk Helbing!
with Wenjian Yu, Matjaz Perc, Attila Szolnoki, !

Gzörgy Szabo, and Sergi Lozano !

Social Mechanisms and Institutions to 
Promote Cooperation!



Flickr photo by nologo_photography. License: CC BY-SA 2.0.!

Pool Punishment (and Surveillance)!



Ferguson!



„Phantom Traffic Jams“ Can‘t Be Prevented 
Even When Knowing the Thoughts of People!!

Thanks to !
Yuki Sugiyama!

At high densities, free traffic flow is unstable:!
Despite best efforts, drivers fail to maintain speed!

Capacity drop, 
when capacity 

is most needed!!



C  Condition with P=1

D  Condition with P=3

mixed 
neighborhoods

3

5

1

7

9

15

17

13

11

19

4

6

2

8

10

16

18

14

12

20

A B

stochastic model (β=1.5)
deterministic model

observed in experiment

si
ze

 o
f 

b
ig

g
e

st
 c

lu
st

e
r

P=1 P=3

5
1

0
1

5
2

0
0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

2
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

p
o

si
tio

n
 o

n
 c

ir
cl

e

1
3

5
7

9
11

1
3

1
5

1
7

1
9

stochastic model

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

2
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

p
o

si
tio

n
 o

n
 c

ir
cl

e

1
3

5
7

9
11

1
3

1
5

1
7

1
9

typical experimental session

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

2
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

p
o

si
tio

n
 o

n
 c

ir
c
le

1
3

5
7

9
11

1
3

1
5

1
7

1
9

deterministic model

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

2
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

p
o

si
tio

n
 o

n
 c

ir
cl

e

1
3

5
7

9
11

1
3

1
5

1
7

1
9

deterministic model

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

2
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

p
o

si
tio

n
 o

n
 c

ir
c
le

1
3

5
7

9
11

1
3

1
5

1
7

1
9

stochastic model

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

2
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

p
o

s
iti

o
n

 o
n

 c
ir
cl

e

1
3

5
7

9
11

1
3

1
5

1
7

1
9

interaction period

typical experimental session

!
!
!
      !

A 96% Correct Micro-Model May Not Be Able 
to Predict the Macro-Outcome! !

Michael!
Mäs and DH!
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Noise on the Micro-Level Can Affect !
Macro-Level Outcomes!
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Adding “Noise” Yields Improved Results! !
Less Accurate Micro-Models May !
Reproduce Macro-Patterns Better!

Michael!
Mäs and DH!

!
!
!
      !



Kin Selection, Genetic Favoritism!



Direct Reciprocity!



Routes to cooperation require to destabilize defection (PD --> SD) !
or to stabilize cooperation (PD -->SH) or both (PD -->HG)!

Route 1: Kin selection 2a: Direct reciprocity, 2b: Indirect reciprocity, !
2c: Costly peer punishment, 3: Network interactions!

Routes to Cooperation!



Reputation, Indirect Reciprocity!



Merit-Based Matching:  
Everyone Can Be Better Off!

DH, with Heinrich Nax and Ryan Murphy!



Characteristics of the 
game:!
§  Intergroup conflict!

§  Subjects are endowed 
with 1000 points in every 
period!

§  Each member of winning 
group gets 1000 points!

§  Chances of winning 
correspond to sum of 
contributions!

§  Nash equilibrium: 250 
points per group!

Competition of Mechanisms: Is Peer 
Punishment or Signaling Superior?!



D = Defectors (free-riders), M = Moralists = cooperators punishing 
defectors, C = non-punishing Cooperators (second-order free-
riders), I = Immoralists = defectors punishing other defectors!
!

How Second-Order Free-Riders Are Eliminated !
and Punishment Spreads!



The Breakdown and Outbreak of 
Cooperation!

Red, yellow: defectors (cheaters)!
Blue, green: cooperators!



37!

Public Good Game with Mobility: 
Experimental Design!

Joint work with Carlos Roca, !
Charles Efferson and Sonja Vogt!



Payoff as Function of Mobility!
                                                      !
                                         !

Mobility is key to success!!



Dirk Helbing!
with Thomas Grund, Christian Waloszek,!

Matthias Leiss, Heinrich Nax,!
and others!

Why Humans Are Social: 
The Emergence of the „Homo Socialis“!



§  Agents decide according to a best-response rule that strictly maximizes 
their utility function, given the behaviors of their interaction partners 
(their neighbors). 
!

§  The utility function considers not only the own payoff, but gives a 
certain weight to the payoff of their interaction partner(s). The weight is 
called the ``friendliness'' and set to zero for everyone at the beginning 
of the simulation.!

!

Evolutionary Model of Human 
Decision-Making!

Evolutionary Model of Human Decision-Making!



§  Agents decide according to a best-response rule that strictly maximizes 
their utility function, given the behaviors of their interaction partners 
(their neighbors). 
!

§  The utility function considers not only the own payoff, but gives a 
certain weight to the payoff of their interaction partner(s). The weight is 
called the “friendliness” and set to zero for everyone at the beginning of 
the simulation.!

!

Evolutionary Model of Human 
Decision-Making!

Evolutionary Model of Human Decision-Making!



§  Friendliness is a trait that is inherited (either genetically or by 
education) to offspring. The likelihood to have an offspring increases 
exclusively with the own payoff, not the utility function. The payoff is 
assumed to be zero, when a friendly agent is exploited by all neighbors 
(i.e. if they all defect). Therefore, such agents will never have any 
offspring.!

§  The inherited friendliness value tends to be that of the parent. There is 
also a certain mutation rate, but it does not promote friendliness. (In the 
simulation results discussed here, mutations were specified such that 
they imply an average friendliness of 0.2, which cannot explain the 
typically observed value of 0.4.)!

!

Evolutionary Model of Human 
Decision-Making!

Evolutionary Model of Human Decision-Making!



§  Friendliness is a trait that is inherited (either genetically or by 
education) to offspring. The likelihood to have an offspring increases 
exclusively with the own payoff, not the utility function. The payoff is 
assumed to be zero, when a friendly agent is exploited by all neighbors 
(i.e. if they all defect). Therefore, such agents will never have any 
offspring.!

§  The inherited friendliness value tends to be that of the parent. There is 
also a certain mutation rate, but it does not promote friendliness. (In the 
simulation results discussed here, mutations were specified such that 
they imply an average friendliness of 0.2, which cannot explain the 
typically observed value of 0.4.)!

!

Evolutionary Model of Human 
Decision-Making!

Evolutionary Model of Human Decision-Making!



Phase Diagram: Parameter-
Dependent Outcome!

“Homo 
economicus” 
results!

“Homo 
socialis” 
results!

Homo Economicus vs. Homo Socialis!



Surprisingly, evolution has 
made (many of) us other-
regarding. It’s the reason 
for our superior position in 
the animal kingdom and for 

the existence of our 
society.!



Emergence of the „Homo 
Socialis“ 

!

The “homo socialis” is conditionally cooperative, takes self-determined but 
other-regarding decisions (considering the impact on others).!
!
This implies interdependent decisions, “networked minds”.!

Emergence of the Homo Socialis!



Distribution of Friendliness 
Values!
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Cascading Effects During Financial Crises!
“How ever selfish man may be 
supposed, there are evidently some 
principles in his nature, which 
interest him in the fortune of others, 
and render their happiness 
necessary to him, though he derives 
nothing from it.”  

Adam Smith: The Theory of Moral Sentiments. 1759.!

R.O. Murphy, K.A. Ackermann, M.J.J. 
Handgraaf (2011) Judgment and Decision 
Making 6(8), 771–781. !



FED

CBA
Cooperation between Strangers!



The „Homo Socialis“ Cannot Be Understood as a 
Small Deviation from the „Homo Economicus“, 

Which Can Be Approximated by Him. !

“H
om

o 
Ec
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”!

“H
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So

ci
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”!



Statistically independent decisions 
of the „homo economicus“ may be 

handled with standard 
econometric methods. 

Interdependent decisions of the 
„homo socialis“ require a 

complexity science description. !



Therefore, it’s wrong to 
assume that other-regarding 

preferences would not 
change rational choice theory. 

But it can be extended by 
considering complex 

dynamics.!



New Economic Thinking!



Dirk Helbing!
with Michael Mäs, Anders Johansson, !

Heiko Rauhut, Fabian Winter,!
and others!

Modeling the Emergence of Social Norms 
when Preferences are Incompatible!



Joint work with Fabian Winter and Heiko Rauhut!

Results of an Ultimatum Game Experiment!

Conflict between Individuals with Equity !
and Equality Preferences!
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!

Emergence of Social Norms: Theoretical 
Results!

Population 1 !
sets the norm!

Population 2 !
sets the norm!

Everyone tends!
to do what !
he/she likes!
(“anomie”)!

St
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Reward of showing preferred behavior / Reward of conforming!

Computer simulations:!
!
Red = individuals!
preferring behavior 1!
!
Yellow = individuals!
adjusting to behavior 1!
!
Blue = individuals!
preferring behavior 2!
!
Green = individuals !
adjusting to behavior 2 !

Local 
cultures!



Anomie!
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Trajectories session 4, (heterophilious neighborhoods)

Interaction period!
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Trajectories pretest, (mixed neighborhoods)
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Trajectories session 5, (mixed neighborhoods)Results from the lab: anomie!

Occurrence of Anomie: Experimental 
Results!



Norm!
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Trajectories pretest, (mixed neighborhoods)Results from the lab: norm!

Emergence of Social Norms: 
Experimental Results!

su
bj

ec
t!

Interaction period!

Occurrence of Social Norms: Experimental 
Results!



2 Populations with Incompatible 
Preferences!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!MSH = multi-population stag hunt game !

MPD = multi-population prisoner’s dilemma!
MHG = multi-population harmony game!
MSD = multi-population snowdrift game!

with interactions and self-interactions!

without self-interactions!

without interactions!



Dirk Helbing!
with Karsten Donnay, Thomas Chadefaux, !

Ravi Bhavnani, Dan Miodownik, !
and others!

!

Studying Intercultural and International 
Conflict!



Ethnic areas and bomb attacks before 2006! Ethnic areas and bomb attacks after 2006!

Conflict occurs primarily at boundaries between areas with different ethnic 
fractions. Mixed areas shrink.!

Source: BBC!

Interrelation of Spatial Interaction, Conflict, 
and Migration!



Conflict in the Middle East!



Conflict in the Middle East: Possible Future 
Scenarios!

‘Business as Usual’! Clinton Parameters!



Dirk Helbing!
with Dirk Brockmann, Maximilian Schich, !

Laszlo Barabasi, Bogdan State, !
and others!

!

Understanding Social Dynamics by 
Analyzing Human Activity Data !



Measurement and Prediction of Conflict Probability!

Joint work of Thomas Chadefaux and Dirk Helbing!
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Measuring Physics Memes!
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M. Schich, C. Song, Y.-Y. Ahn, A. Mirsky, M. Martino, A.L. Barabasi, DH, Science (2014)!

Cultural Science – What Birth and Death Data 
Reveal!



Dirk Brockmann and DH, Science (2013)!

Complexity of Epidemic Spreading!



Dirk Brockmann and DH, Science (2013)!

Predictability of Epidemic Spreading!



Epidemic Spreading!

Source: Dirk Brockmann!



Countering Pandemics!



Dirk Helbing  (ETH Zurich)!

Follow us on!


